Refutation of a Gerhard W. Bruhn paper

M.W. Evans

Alpha Institute for Advanced Studies (AIAS) (www.aias.us)

The following is a refutation of the paper: Bruhn, G. W. (2006), No Lorentz property of M W Evans' O(3)symmetry law, Physica Scripta, 74(5), 537-538.

Detailed Points of Refutation

The correct way to transform the B Cyclic Theorem is well known and described in great detail in the literature ${ }^{[*]}$.

Bruhn refers to an Eq. (1.1) which does not appear in the text until halfway down Page 2.

The real part of $B^{(1)}$ is
$\operatorname{Re}\left(\frac{B^{(0)}}{\sqrt{2}}(i-i j)(\cos \phi+i \sin \phi)\right)$

$$
\begin{equation*}
=\left(\frac{B^{(0)}}{\sqrt{2}}(i \cos \phi+j \sin \phi)\right. \tag{1}
\end{equation*}
$$

which is trivially apparent.

The Bruhn equation (1.5) is also trivial:
$\frac{1}{2}\left(B_{x}^{2}+B_{y}^{2}\right)=B_{z}^{2}$.
After Lorentz transformation (assuming that Bruhn did the math correctly), it becomes:
$\frac{1}{2}\left(B_{x}^{\prime 2}+B_{y}^{\prime 2}\right)=\frac{1-\beta}{1+\beta} \frac{1}{2}\left(B_{x}^{2}+B_{y}^{2}\right)=\frac{1-\beta}{1+\beta} B_{z}^{2}=\frac{1-\beta}{1+\beta} B_{z}^{\prime 2}$.

Equations (2) and (3) demonstrate Lorentz covariance of the B Cyclic Theorem. This is because Eq. (3) is of the same form as Eq. (2).

The factor β is
$\beta=\frac{v}{c}$.
However, the B Cyclic Theorem applies to a wave travelling at c. Consequently, in Eq. 4, $v=0$.

Therefore, Eq. (3) is the same as Eq. (2). Q.E.D.

Note that the argument is that an electromagnetic plane wave travelling at $\mathrm{c},\left(\mathrm{B}^{(1)}=\mathrm{B}^{(2)^{*}}\right)$, cannot travel faster than c .

A reasonable conclusion would be that either Bruhn does not know this rule or he has deliberately contrived an "error".
${ }^{\text {[*] }}$ For additional information, please see (aias.us):

- UFT Paper 89, Appendix 2: Proof of the Lorentz Invariance of the B Cyclic Theorem. (Notice the explanation in the last paragraph about how the factor $B^{(0)}$ cancels out. This critical factor is equal to $\kappa A^{(0)}$ (see Paper 89, Appendix 3), which contains the Lorentz-variant wave number κ.)
- UFT Paper 89, Appendix 10: Rebuttal of G. Bruhn's Comments on the Lorentz Covariance of the B Cyclic Theorem.

Myron W. Evans
British Civil List Scientist

